基于深度置信网络和信息融合技术的轴承故障诊断

【摘要】 提出一种基于深度置信网络(DBN)和信息融合技术的轴承故障诊断新方法。首先采用集合经验模式分解将轴承振动时域信号分解为若干个固有模态函数,并分别输入至若干个中进行故障状态识别,然后通过简单投票法将每个识别的结果进行决策层信息融合,从而得到轴承故障的最终诊断结果。通过对单负载和多负载下不同类型和不同损伤程度的滚动轴承故障诊断进行实例分析,验证了本文方法的有效性和精确性。