联合判别式核相关滤波视觉跟随算法
【摘要】 目标跟踪算法是计算机视觉领域的热门技术之一,拥有广阔的发展前景。核相关滤波视觉跟踪算法由于循环矩阵构造正负训练样本,避免求逆的大量运算,显著提高计算速度而受到广泛关注。但是,核相关滤波算法存在一定局限性,无法应对现实环境存在的遮挡、目标尺度变化、背景模糊等复杂多变的干扰因素。因此提出一种改进型核相关滤波算法。该算法不仅融合多种颜色特征提高图像处理的准确度,而且通过构建自适应尺度变化策略来应对目标尺度变化的挑战。为了进一步区分目标和背景信息,提出联合判别式背景感知与干扰判别的策略,以充分利用目标上下文信息。相比于传统核相关滤波算法,改进算法的精度更高,鲁棒性更强。通过在视频数据集OTB-50上的实验可得,改进后的核相关滤波算法性能获得较大提升。