基于U形卷积神经网络的震相识别与到时拾取方法研究
【摘要】 精确获取震相到时是地震定位和地震走时成像等研究的重要基础.近年来,随着地震台站的不断加密,地震台网监测到的地震数量成倍增长,发展快速、准确、适用性强的震相到时自动拾取算法是地震行业的迫切需求.本文在前人工作基础上,发展了Pg、Sg震相自动识别与到时拾取的U网络算法(Unet_cea),使用汶川余震和首都圈地震台网记录的89344个不同震级、不同信噪比的样本进行训练和测试.研究表明,U网络能够较好地识别Pg、Sg震相类型和拾取到时,Pg、Sg震相的正确识别率分别为81%和79.1%,与人工标注到时的均方根误差分别为0.41s和0.54s.U网络在命中率、均方根误差等性能指标上均明显优于STA/LTA和峰度分析自动拾取方法.研究获得的最优模型可以为区域地震台网的自动处理提供辅助.