堆叠图嵌入极限学习机算法
【摘要】 极限学习机(Extremelearningmachine,ELM)因其训练参数少、学习速度快、泛化能力强等特点,已被广泛应用于训练单隐藏层前馈神经网络。本文首先结合图嵌入框架提出一种新的极限学习机自编码器(GEELM-AE),在ELM空间中挖掘数据的局部近邻结构信息和全局结构信息。在GEELM-AE中,采用局部Fisher判别分析构建了图嵌入框架下的本征图和惩罚图。进而,通过堆叠多个GEELM-AE提出了深度框架下的堆叠图嵌入极限学习机(SGE-ELM)算法。在多个标准数据集上的实验结果表明,与已有算法比较,本文算法获得了更高的精度并具有较快的训练速度。这验证了提出的图嵌入极限学习机自编码器能够对原始数据进行有效的特征表示,堆叠的多层图嵌入极限学习机能够获得数据的有效的高层次抽象表征。