基于低维约束嵌入的分布参数系统建模
【摘要】 针对分布参数系统受时空耦合特性、强非线性、复杂的能量交换以及未知因素等的影响,难以精确建模的问题,提出基于数据驱动的低维约束嵌入建模方法.以数据流形分布为基础,考虑数据局部非线性和全局非线性;通过非线性映射和流形学习方法,保证数据局部流形结构的非线性联系;约束非局部流形结构,避免数据在低维空间内发生混乱现象;采用最小二乘支持向量机建立时序模型,获得时间方向上的动态特征,并通过时空整合,重构系统完整的预测模型.热过程的实验结果表明,所提出的方法能有效建立强非线性分布参数系统的模型,与传统方法对比,具有更强的建模性能与预测能力.