基于小波能量谱和ReliefF算法的雷达辐射源无意调制特征提取
【摘要】 为了获取更加有效的雷达辐射源无意调制特征并进一步降低特征的维度,以提升低信噪比下雷达辐射源个体识别的准确率,从时频分析角度出发提出了一种基于小波变换能量谱和ReliefF算法的无意调制特征提取方法。首先对辐射源信号进行小波变换并获取小波能量谱,然后采用ReliefF算法对小波能量谱值进行权重分析,筛选出区分能力较强的高权重小波能量信息作为雷达辐射源的无意调制特征。该方法将权重分析应用于特征提取中,在提升特征有效性的同时进一步降低了特征的维度。实验结果表明:相较于传统时域和频域中的无意调制特征,基于小波能量谱和ReliefF算法提取的无意调制特征具有低维度、强抗噪声的特点。当信噪比大于0 dBm时识别率达到90%以上,具有较高的工程应用价值。