基于模糊评估自适应更新的油井动液面软测量建模
【摘要】 针对常规动液面软测量方法在面对复杂、多变的工况时缺乏有效的模型更新机制、预测精度不足等问题,提出了一种基于模糊评估的自适应更新建模策略,通过基于模糊推理产液量变化趋势拟合的模型性能评价模块,动态更新模型,实现对原测量模型的反向推理验证。首先离线建立不同工况的动液面多模型预测集,然后根据产液量拟合优度指标对动液面在线输出模型进行实时的输出评估判断,利用相似样本数据进行模型的在线更新,使其能不断适应油井的工况变化,自适应获得更加准确的软测量模型。最后通过辽河油田现场生产数据验证表明,该方法能够有效提高模型的预测精度和泛化能力,可以满足油田现场的生产需求。