基于多尺度分解和深度学习的锂电池寿命预测
【摘要】 针对目前的剩余寿命预测(RUL)方法存在模型适应性差及预测不准确等问题,提出多尺度深度神经网络的锂电池健康退化预测模型.通过经验模态分解(EEMD)方法和相关性分析(CA),将采集到的锂电池能量数据分解为主趋势数据和波动数据;采用深度置信网络(DBN)和长短期记忆网络(LSTM),分别对主趋势与波动数据进行建模;将DBN与LSTM预测结果进行有效集成,得到锂电池的健康预测结果.实验结果表明,利用该方法能够有效地对锂电池的健康趋势进行拟合,得到准确的RUL预测结果,性能优于其他典型的预测方法.