基于优化变分模态分解的磁瓦内部缺陷检测

【摘要】 针对磁瓦内部缺陷声振检测存在的信号处理和特征识别问题,提出结合变分模态分解(VMD)、粒子群优化(PSO)和随机森林(RF)的信号分析方法.该方法以模态能量和相邻模态中心频率差值构建代表VMD处理性能的适应度函数,其中以VMD的分解层数和惩罚因子2个参数作为该适应度函数的变量;通过PSO在VMD参数选择空间中搜索该函数的最小值以执行VMD的参数优化,最小值所对应的参数设置即为VMD的最优参数;利用得到的参数实现信号的最优VMD分解并通过计算模态分量的能量来筛选特征模态,从中提取过零率、谱质心和最大峰值频点以联合反映磁瓦内部缺陷的特征信息;经RF分类器对这些特征进行识别进而对内部缺陷的存在情况做出判断.实验证明所提出的方法能够准确、高效地实现不同类型磁瓦的内部缺陷检测.