基于LASSO-WOA-LSSVM的海洋管线外腐蚀速率预测

【摘要】 目的构建海洋管线外腐蚀速率预测模型,提高海底油气管线外腐蚀速率预测的准确性。方法建立基于套索(LASSO)回归和鲸鱼优化算法(WOA)的最小二乘支持向量机(LSSVM)腐蚀速率预测模型,采用LASSO回归方法对指标进行筛选,提取海洋管线腐蚀的主要影响因素。应用最小二乘支持向量机算法建立海洋管线外腐蚀速率预测模型,并使用鲸鱼优化算法对模型参数进行优化,避免了参数取值对模型回归性能的影响。以海洋挂片实验为例,通过MATLAB进行模拟仿真,分析验证模型预测结果,并将预测结果与其他模型进行对比分析。结果LASSO回归算法筛选得到影响腐蚀速率的主要因素为:温度、溶解氧含量、pH值。采用WOA-LSSVM模型所预测的结果与实际值较为吻合,其平均相对误差为2.23%,均方根误差(RMSE)为0.3248,决定系数R2达到0.9708,均优于其他两种模型。结论基于LASSO回归和鲸鱼优化算法的最小二乘支持向量机预测模型具有更优的泛化能力和预测精度,为海底管道腐蚀研究工作提供了新思路,也为海洋油气输送系统的结构安全与风险防范提供了参考。