热弹性动力学耦合问题的插值型移动最小二乘无网格法研究

【摘要】 该文基于插值型移动最小二乘法,将无网格局部Petrov-Galerkin(MLPG)法用于二维耦合热弹性动力学问题的求解。修正的Fourier热传导方程和弹性动力控制方程通过加权余量法来离散,Heaviside分段函数作为局部弱形式的权函数,从而得到描述热耦合问题的二阶常微分方程组。然后利用微分代数方法,温度和位移作为辅助变量,将上述二阶常微分方程组转换成常微分代数系统,采用Newmark逐步积分法进行求解。该方法无需Laplace变换可直接得到温度场和位移场数值结果,同时插值型移动最小二乘法构造的形函数由于满足Kroneckerdelta特性,因此能直接施加本质边界条件。最后通过两个数值算例来验证该方法的有效性。