多种数据泛化策略融合的神经机器翻译系统

【摘要】 在Transformer模型的基础上,该文从数据泛化、多样化解码策略和后处理方法3个方面进行改进.多种数据泛化策略融合方法对不同种类的稀疏词语进行识别、泛化和翻译,减少错译现象.利用检查点平均和模型集成等多样化解码策略进一步提升翻译效果.在CCMT2019中英新闻领域翻译任务上的实验结果显示,改进后的方法在基线系统上的BLEU-SBP值提升了约1.85%.