集成学习支持的复杂地貌类型区土壤全钾含量自适应曲面建模

【摘要】 土壤属性空间分布受复杂地学环境要素影响,空间分异特征十分明显,用单一全局插值模型进行土壤属性模拟,难以实现高精度模拟。对于空间不连续、全局插值模型精度有限及适应性差的特点,本文提出了一种集成学习支持的、融合地学环境变量的土壤属性自适应曲面建模方法(ASM-SP)。利用2013年采集的110个样点数据,使用回归克里金(RK)、贝叶斯克里金(BK)、普通克里金插值法(OK)、反距离加权法(IDW)、ASM-SP,分别对青海湖复杂地貌类型区进行土壤全钾含量的插补。本文采用逐点交叉验证(LOOCV)插值方法模拟精度。结果表明,ASM-SP不仅考虑了地学环境变量与土壤属性的非线性关系,而且融合了多个模型的适应性优势,是实现复杂地貌类型区土壤全钾含量的高精度模拟的一种新方法。