基于精确几何-边界元法的二维声场问题分析

【摘要】 基于精确几何的思想,建立考虑边界几何形状,减小单元划分过程中产生几何误差的边界积分方程.积分过程中,积分项的奇异性问题通过采用Cauchy主值积分和Hadamard有限部分积分的方法来进行克服.同时,在边界元法求解声场问题过程中,出现的由非真实频率而引起的结果偏差可以通过Burton-Miller方法来解决.数值算例表明,考虑真实边界的精确几何-边界元方法具有较好的精确度.