认知无线电中基于声望和重叠式联盟博弈的频谱感知和资源分配算法
【摘要】 在认知无线电网络中,次用户频谱感知和接入会受到多径衰落和阴影衰落等因素的影响.为了提高频谱感知准确度和资源分配效率,将多个次用户合作频谱感知和接入问题建模为重叠式联盟博弈模型,每个次用户可以加入多个联盟来提升自己的期望收益.为了提高全局有效吞吐量和资源分配公平性,引入声望机制来设计联盟资源分配规则,提出了基于声望值的重叠式联盟形成(R-OCF)算法.仿真结果表明:与无声望机制算法和分离式联盟形成(DCF)算法相比,R-OCF算法的资源分配效率和公平性更高;同时,次用户的期望收益和自身声望值相关,次用户的声望值越高,获得的期望收益越大.