最优化分数阶算子EGM(1,1)模型在变形监测预报中的应用

【摘要】 针对传统灰色模型在形变监测中数据序列拟合和预测精度不理想的情况,提出粒子群算法优化的分数阶算子EGM(1,1)模型。通过粒子群算法选择拟合EGM(1,1)平均相对误差最小的分数阶次,构建最优分数阶算子EGM(1,1)模型。用典型的变形监测数据验证优化模型,结果表明,优化模型对变形监测数据的拟合和预测都达到较高的精度,说明优化模型在变形监测数据的处理中具有可行性和有效性。