稀疏差异先验信息支持的高光谱图像稀疏解混算法

【摘要】 基于光谱库的高光谱稀疏解混技术近年来得到了人们的关注,该技术利用光谱库中光谱样本作为端元,将解混问题转化为稀疏表示问题。然而,由于测量环境的差异,待解混图像的实际端元往往与光谱库中相应光谱信号存在差异。本文提出了一种光谱差异稀疏约束的联合稀疏回归解混算法。首先,假设光谱差异具有稀疏特性,建立了光谱库校正模型,使得在解混过程中可对光谱库进行自适应地调整;然后,将光谱库校正模型与联合稀疏回归解混模型结合,建立了考虑光谱差异的稀疏解混模型;最后,基于交替方向乘子法得到了迭代优化解决方案。分别利用仿真和真实高光谱数据进行了试验验证,结果表明,在光谱库不匹配的情形下,本文方法能够有效提高稀疏解混算法的解混性能。