基于神经主题模型的对话情感分析
【摘要】 对话情感分析旨在识别出一段对话中每个句子的情感倾向,其在电商客服数据分析中发挥着关键作用。不同于对单个句子的情感分析,对话中句子的情感倾向依赖于其在对话中的上下文。目前已有的方法主要采用循环神经网络和注意力机制建模句子之间的关系,但是忽略了对话作为一个整体所呈现的特点。建立在多任务学习的框架下,该文提出了一个新颖的方法,同时推测一段对话的主题分布和每个句子的情感倾向。对话的主题分布,作为一种全局信息,被嵌入到每个词以及句子的表示中。通过这种方法,每个词和句子被赋予了在特定对话主题下的含义。在电商客服对话数据上的实验结果表明,该文提出的模型能充分利用对话主题信息,与不考虑主题信息的基线模型相比,Macro-F1值均有明显提升。