一种基于自适应M-S模型的遥感影像分割方法
【摘要】 提出一种基于自适应M-S模型的遥感影像多特征融合的分割方法。首先结合改进的Sobel算子进行阈值化轮廓提取方法提取边缘信息;然后利用波段距离加权函数计算边权值,同时按照一定的原则加入边缘特征,采用最小生成树算法获得初始分割对象;最后在光谱特征和纹理特征的辅助下进行自适应M-S模型合并,合并后的对象即为分割结果。为了验证该方法的可行性,采用Quickbird影像和高分二号影像进行实验分析并对结果做出定性和定量评估。实验结果表明,基于自适应M-S模型的遥感影像分割方法的分割精度优于分形网络演化算法,同时分割速度也略有提升。关键词:M-S模型;最小生成树;边缘信息;纹理信息;多尺度分割