基于FasterR-CNN算法开发的肾小球病理人工智能识别系统的速度与效率分析

【摘要】 目的基于FasterR-CNN算法开发出能够自动对肾组织病理切片图像中肾小球进行识别的人工智能(artificialintelligence,AI)系统,帮助病理医师提高计算肾小球个数与识别缺血硬化性肾小球的速度和效率。方法将山西省人民医院和山西医科大学第二医院自2008年至2018年的11476例肾病患者PASM染色的肾脏病理切片进行数字化扫描,图像数据通过远程病理系统传输到云端并进行储存。使用FasterR-CNN方法创建包括2296张图像的训练集和包括174张图像的测试集,训练集用于训练AI学习识别肾小球,测试集用于测试和评价AI识别出肾小球的平均时间和准确率。同时将测试集的174张病理切片分别给工作2年左右的病理科医师(初级医师)和10年以上工作经历的病理科医师(高级医师)阅读,收集医师识别出肾小球的平均时间和准确率。结果通过训练基于Fa