基于EMD-LWT的光纤陀螺阈值去噪
【摘要】 光纤陀螺(FOG)温度漂移数据常常淹没在各种噪声背景中,直接补偿建模漂移信号十分困难,为了更好地消除混杂在光纤陀螺温漂数据中的噪声,提出了一种经验模态分解(EMD)和提升小波变换(LWT)相结合的EMD-LWT滤波方法对光纤陀螺输出信号进行预处理。首先对光纤陀螺含噪信号进行EMD分解,根据信息熵值判断本征模态函数(IMF)的噪声项和混合模态项,然后对噪声项进行LWT去噪,混合模态项进行小波分析去噪。对某干涉型FOG进行静态测试获得陀螺漂移数据,本文提出方法与小波变换和提升小波变换滤波方法进行了对比分析。实测数据计算结果表明,本文提出的EMD-LWT滤波算法具有最好的滤波效果,经处理后重构信号的均方根误差(RMSE)下降了63%,有效地滤除了FOG输出中的噪声。