基于粒子群算法优化的BP神经网络在海水水质评价中的应用

【摘要】 针对目前存在的海水水质受多因素影响、评价难的现状,提出了一种基于粒子群算法(PSO)优化误差反向传播(BP)神经网络的海水水质评价模型。该模型通过PSO得到BP神经网络最优的权值和阈值,结合青岛东部海域10个监测站点的数据得到水质评价结果。实验证明,该模型和单因子评价、传统的BP神经网络评价相比较,具有训练时间短、预测精度高的特点,在海水水质评价中具有良好的应用价值。