基于遗传算法优化支持向量机的大坝安全性态预测模型
【摘要】 为提高支持向量机对大坝安全性态的预测效果,提出基于遗传算法优化的GA-SVM大坝安全性态预测模型,以k-CV验证误差最小作为优化目标,引入遗传算法对支持向量机的惩罚参数c和核函数参数g进行寻优。模型以影响因子作为输入,以效应量作为输出,采用训练样本对支持向量机进行训练,并使用训练好的模型预测效应量。根据概率统计理论中的3σ准则,建立大坝安全性态三级指标和判别准则。以某大型水库大坝为例,建立该大坝的GA-SVM模型,并与SVM模型和逐步回归模型进行了对比验证。预测结果表明,GA-SVM模型渗压预测值与实测值最接近,预测精度较SVM模型和逐步回归模型提高了约3倍。