基于机器学习方法的安徽省年降水量预测
【摘要】 为准确、可靠地预测安徽省的年降水量,基于安徽省1900~2009年的均一化降水量数据集,使用信号分析技术和机器学习方法建立区域年降水量预测模型。Morlet小波分析和EEMD结果显示,研究区域历史年降水量序列大致存在3、5、20年左右的周期。为提高模型精度,建立5种输入层为3个节点、输出层为1个节点的机器学习模型,即BPNN、WANN、TSNN、SVM、ELM。按4∶1原则,将整理好的样本集中的前85组作为模型训练集,后22组作为测试集。结果表明,5种模型表现较好,率定期的平均相对误差分别为6.1%、12.1%、14.3%、14.3%、13.2%;验证期的平均相对误差为20.6%、13.6%、12.5%、13.0%、14.3%,合格率分别为63.7%、72.7%、77.3%、77.3%、72.7%。总体来看,除BPNN模型外,其余模型均较理想,机器学习方法在非线性水文序列的模拟和预测中具有较好的适用性