基于改进卷积神经网络的平面地图道路模糊推理分割方法

【摘要】 由于平面地图呈现方式单一且有限,为提升其多样性需准确分割平面地图中的道路区域。提出一种基于改进CNN(convolutionalneuralnetwork)平面地图道路和模糊推理分割的方法。选取两个道路信息丰富的数据库,实验选取百度地图(Baidu)数据库和高德地图(Amap)数据库,标记得到含标签信息的像素训练集;用Sigmoid分割目标函数代替复杂的Softmax函数分别训练得到Baidu-CNN模型和Amap-CNN模型;对得到的像素点概率进行非线性映射,构建模糊推理系统;将非线性映射后均匀分布的像素点概率输入模糊推理系统,判断像素点属于道路区域的概率,得到道路分割结果。结果表明:所提算法得到的平面地图道路分割模型较传统算法分割效果更好;准确率可以达到94.49%;单张平面地图的道路分割速度可达到5s。