基于PSR和DBN的超短期母线净负荷预测
【摘要】 随着电网优化调度的精细化、智能化和计及电力系统安全性与经济性的电网高级应用的广泛采用及分布式能源的大量接入,母线负荷预测的精度要求不断提高而负荷的不确定性和非线性特征进一步增强。针对上述问题,文中提出一种基于相空间重构(PSR)和深度信念网络(DBN)的超短期母线负荷预测模型,首先采用C-C法对净负荷时间序列进行PSR,然后利用DBN对重构后的数据进行拟合并得出负荷的预测值。文中利用某市变电站实测负荷数据检验了该超短期母线负荷预测模型的有效性,证明该模型在分布式电源渗透率较高且母线负荷波动较大的情况下仍然有较高的预测精度。