基于改进简单线性迭代聚类算法的遥感影像超像素分割
【摘要】 使用简单线性迭代聚类(SLIC)算法对遥感影像进行超像素分割时,存在运行时间长与边缘贴合度差的问题,因此,提出了一种基于改进SLIC的遥感图像超像素分割算法。首先,改进了初始种子点的初始化方式,消除了随机分配造成的影响;其次,在每次迭代后引入滤波操作,去除超像素内与聚类中心在颜色空间上差异较大的像素点,用剩余的像素点更新聚类中心;最后,用改进的均值计算公式进行迭代以实现超像素分割。在Python环境下的实验结果表明,在超像素个数相同的情况下,相比经典的SLIC算法,本算法在相同数据集中的分割误差率降低了7.4%、分割精度提高了1.4%,可在有效提高边缘轮廓贴合度的同时降低算法的计算复杂度。