高光谱成像技术结合特征波长优化对苍术颗粒剂生产厂家的可视化判别研究
【摘要】 为了给苍术颗粒剂基于高光谱成像的可视化区分提供理论指导,选用竞争性自适应重加权采样法(CARS)和相关性分析(CA)进行两次特征波长选择,提出了利用近红外高光谱成像技术对苍术颗粒剂产品溯源的新方法。874~1734nm波段范围内采集150个来自三个生产厂家的苍术颗粒剂高光谱图像,提取感兴趣区域(ROI)的光谱反射率值作为鉴别模型的输入变量,采用邻近算法(KNN)、误差反向传输神经网络(BPNN)、偏最小二乘法判别分析(PLS-DA)、最小二乘支持向量机(LS-SVM)建立四种算法(分类器)的判别模型。通过对模型效果的评价标准(预测集总体判别率以及kappa系数)来判别三个不同厂家苍术颗粒剂的区分效果。除KNN模型外,预测集的判别率都是100%,kappa系数均为1。为了加快运算速度,研究通过CARS、随机蛙跳算法(RF)、连续投影算法(SPA)和序列前向选择(SFS)算法初步选择特征波长;采用CARS,RF,SFS和SPA结合CA算法取得了4组最优波长。分别得到4个(975,1220,1419,1476nm)、2个(1005,1442nm)、4个(924,1005,14