基于Mie散射理论的C@H2O复合粒子散射特性研究

【摘要】 大气中大量存在的复合粒子会对激光传输效率产生很大影响。为凝结核外层包裹以水的核壳结构微粒对光传输具有明显的散射效应MieC@H2O核壳结构微粒的散射特性进行了理论分析和数值计算,首先给出了不同入射波长核粒子半径以及水膜厚度、核粒子半径以及水膜厚度条件下偏振变化情况;条件下散射强度分布变化曲线;其次给出了不同入射波长、结果表明各参数对前向散射强度影响较大,入射波长越大散最后讨论了光学截面与粒子半径之间的关系核半径增大粒子的前向散射增强,水膜厚度增大粒子的前向散射增强,而后向散射无明显影射强度越弱,C响;入射波长较大时,粒子在多个角度出现线偏振光,入射波长增大水膜厚度增大,偏振度峰、值都会增多;随着入射波长的增大,散射截面最大峰值位置向着半径增大的方向移动,并伴随一定的振荡现象,散射和消光截面在碳核半径为碳核半径变大、左右达到最大值散射理论对本文应用作。。C0.1μm。关键词:光传输;散射理论;MieC@H2O复合粒子;散射特性收稿日期:基金项目:国家自然科学基金(2018-05-21;修订日期:2018-08-26,1134715861704149SupportedbyNationalNaturalScienceFoundationofChinaZaozhuangUniersity102061803());枣庄学院青年科学基金(,11347158102061803);61704149()资助项目ProjectofYouthScientificResearchFundof第3期LYUYi-ying,etal.:ScatteringCharacteristicsofC@H2OCompositeParticleBasedonMieLight…2991IntroductionNowadays,lasercommunicationtechnologyhasnecessarytostudytheintensitydistribution,polari-zationchangeandotherfactorsthatmayinfluencethetheelectromagneticwaveafterscatteringbymi-developedrapidlywiththeimprovementoflaserper-croparticles.formance.Ithasthefollowingadvantagesoflargein-formationcapacitygoodsecrecylightstructureand,,practicality.Hightransmissionefficiencyisone[]1-3,ofthekeyfactorsinthedevelopmentoflasertech-nology.Howeverthescatteringoflightintheat-mospherewillmakegreateffectonthepropagationoflaserintheupperair.Therearesomearticlesabouttheinfluenceofairborneparticlesonlasercommuni-[]4-6,cation.Asitisputparticleswereregardedassinglespheresinmostofthemwhileinfactmagnani-identifiedasacoreinthecenterwhileanotheror,mousofwhichhaveacompositeparticlestructure.severaldifferentsubstancesarecoatedontheoutsideOneoftheresearchhotspotsinopticalcommunica-toformshells.Fig.1Core-shellstructurediagram.Theso-calledcore-shellstructureisakindofstructurethatasubstanceistionistoachievehightransmissionefficiencybe-tweentargetswhilethelightscatteringofalargenumberofparticlesintheatmosphereaffectstheef-ficiencyoflasertransmission.,InthispaperthescatteringpropertiesofC@H2OcoreshellstructuredparticlesarestudiedbyusingtheMiescatteringtheory.TheMiescatteringtheoryiswidelyusedinparticlescatteringre-search[7-12].Inviewofthelargenumberofwatermoleculesintheairitishelpfultostudythescat-,teringcharacteristicsoftheC@H2Onuclearshellparticlesasfortomakethein-depthstudyofthela-serfieldtransmission.Wehopethatitcanprovidesometheoreticalguidanceforimprovingthetrans-missionefficiencyofopticalcommunication.2TheoreticalPrinciple2.1Core-shellStructureThestructureofcore-shellstructureisshowninFig.1.Therearealargenumberofcompositemicro-particlesintheatmosphere,smallcoherentnucleus,,withwidedistributionofparticlesizessurroundedwithwater.ThecontentofC@H2Ocompositeparti-clesisveryhighintheatmosphereastheproportionofwatervaporintheatmosphereiscloseto4%.Re-searchesontheopticalpropertiesof[havebeenreportedinsomepapers13-14theparticles],anditishavingthestructureofaleltothepolarizedopticalvector.Thedegreeofpo-suchascarboninthecenterlarizationisgivenbyformula3():2.2MieScatteringTheoryForaregularsphericalscatter,whenthewave-,lengthoftheelectromagneticfieldthatincidenttothescatteriscomparabletothesizeofitthescat-teringcharactersofthescatteragainsttheelectro-magneticfieldcanbeprocessedaccuratelybytheMiescatteringtheory.TheshapeofC@H2Ointheatmospherecanberegardedasspherebecauseitsra-diusissmallincaseofnonabnormalweather[]15.Thescatteringintensitycanbecalculatedbythefollowingformulaaccordingtothe()1()2andMiescatteringtheory.Andthesetwoformulasareusedforpartialpolarizedlight:I⊥=I∥=,,λ28π2r2I0i1λ28π2r2I0i2(())12WhereI⊥isthescatteringintensityofopticalvectorthatperpendiculartothepolarizedopticalvectorI∥isthescatteringintensityofopticalvectorthatparal-;,Here)i1=s1(P=,,)aθ)(,θm,a·s*2am;functionsofscatteringlight;functionsofscatteredlight.Wherei1s1s*·s*1)(((,);,a3,θI⊥-I∥I⊥+I∥,mθ,i2aretheintensity,s2aretheamplitude,s*2aretheconjugatei2=s2m1,300发光学报第40卷,complexofs1parameteroftheparticles2respectively(s1;;θa=πD/λisthesize)()ands2θaretwoamplitudefunctionsrelatedtothescatteringanglewhoseexpressionsareasformula4():()θs1θ=∑n=12n+1(n+1)n()θs2#=∑n=1(()1nPcosθ2n+1(nn+1))(dPn=sinθ)cosθdsinθhereπn=((anπn+bnπn)anπn+bnπn),()4()thefirst-ordern-timesfirst-classLegendrefunctioncosθisthefirstLegendrefunctionPncalledtheMiecoefficientandcanbecalculatedbyaandbare,P()1n()cosθis;;theformula{(((5):)a)a((mψnmζna=ψnζnbn=))((ψ'ψ'n))aamama((ψ'nψ'nmama(-mψ'n(-mζ'n)))a)a(-ψ'n(-ζ'n(ψn(ψn)a)a)ma)ma(ψn(ψn)ma)ma},(()zz=zJnWhereψnsphericalBesselfunction),ofthefirstkind(ψ'nz)((),ζ,Hnandζ'na=zHn)z()a()z)5is(z),Jn(isHankelfunctionarethederiva-tiveswithrespecttotheirvariables.3ResultsandDiscussion3.1ScatteringIntensityofC@H2OCompositePartizcleFig.2Thescatteringintensityagainstscatteringangle,,atdifferentincidentwavelengthsnuclearradius()andwaterfilmthicknesswereplottedinFig.2(.Forthepurposeofdiscussingthepropertiesofca)scatteringintensityonC@H2Ocompositeparticles.andTheforwardscatteringgivesdominance,thescatteringintensityfirstdecreasesandthenin-creasesslightlywiththeincreaseofthescatteringan-gleforacertainincidentwavelengthaccompanied,scatteringangleof100°asisshowninFig.2,()a.Therelationshipbetweenscatteringintensityandin-cidentangleatdifferentnuclearradiusisshowninFig.2bwiththeincidentwavelength0.532μm(),andthethicknessofwaterfilm1μm.Itcanbeseenthatwhenthecarboncoreradiusisfixedtheforward,ScatteringintensityofC@H2Ocompositeparticlesatdifferentincidentwavelengthsdifferentnuclear),a((),radiusbdifferentwaterfilmthickness.The()c-scatteringintensitydecreaseswiththeincreaseofin-,cidentwavelengthinacertainrange.Withfixedcar-boncoreradiustheforwardscatteringdominatesandthescatteringintensityfirstdecreasesthenincreasesatabout80°followedwithacertainoscillation.Inho-mogeneousoscillationsonthedistributionofscatteringintensityareobviouswhenthethicknessofwaterfilmis()larger1μmand2μm.Meanwhilethescattering,,tobestablearound60°whenthethicknessissmaller()0.05μmand0.1μm.firstdecreasesthenincreasesatabout80°followedwithacertainoscillation.Thecurvesaresimilarlyunderdifferentcarbonradiuswhereastheparticleswithbiggercarboncoreradiushavestrongerscatter-byasmalloscillationandfinallystabilizedneartheintensitydecreaseswiththeincreaseofangleandtendsscatteringdominatesandthescatteringintensityingintensityinlargeangelscattering.Todiscussthe第3期LYUYi-ying,etal.:ScatteringCharacteristicsofC@H2OCompositeParticleBasedonMieLight…301influenceofwaterfilmthicknessthecurveofscatter-,tinglinearlypolarizedlightappearedhere.Mean-,ingintensityagainstscatteringangleisplottedatin-whilethenumberofpolarizationpeaksincreasescidentwavelengthof0.532μmandcoreradiusof3.Theforwardscatter-μmasisshowninFig.2,c()obviouslyandtheforwardpolarizationadvantageisobviouswiththeincreaseofwaterfilmthickness.ingalsodominateswhenthethicknessofwaterfilmThusitcanbeconcludedthatwaterfilmthicknessisfixedaswithfixedcarboncoreradius.Asfordif-hasimportantinfluenceonthepolarizationofparticle.,ferentthicknessinhomogeneousoscillationsonthedistributionofscatteringintensityareobviouswhenthethicknessofwaterfilmislarger1μmand2(whilescatteringintensitydecreaseswiththe),μmincreaseofangle,whenthethicknessissmallerandtendstobestablearound60°()0.05μmand0.1μm.Inadditionitcanalsobeseenthattheforwardscat-,teringvariedobviouslywiththeincreaseofthewaterfilmthicknesswhilethebackscatteringisopposite.3.2DegreeofPolarization,,Thepolarizationagainstscatteringangleatdif-ferentincidentwavelengthsnuclearradiusandwa-,terfilmthicknesswereplottedinFig.3.Thepolarizationfirstascendedthendescended,withtheincreasingofangleexhibitingobviousos-cillationwhichdiminishgraduallyastheanglein-creasesandthemostobviousphenomenonoccurswhenthewavelengthis0.325μmFig.3a().Therearemagnanimouspeaksforwhichasisshownin,thevalueofpolarizationcloseto1inlargerincidentwavelengths.Minimumpolarizationappearsat0.325μmwavelengthintheforwardscatteringanddepo-larizationoccursinothersitesbeyondthepeakfull,,depolarizationispresentinbothforwardandback-wardscattering.Therelationshipsbetweenpolariza-tionandscatteringangleunderdifferentcarbonradi-usareshowninFig.3bwiththeincidentwave-(),lengthis0.532μmandwaterfilmthicknessis1μm.AlthoughtheimagesinFig.3arenotsoclearlyitstillcanbeseenthatthepolarizationsfirst()bascendandthendescendwiththeincreasingofan-,,gleandthenumberofpeaksaddsasthecarbonra-obviousperformancewiththewavelengthof0.325μm.()cdiusincreases.Theprofilesofpolarizationatdiffer-Minimumpolarizationappearsat0.325μmwave-entwaterfilmthicknesswereshowninFig.3inlengthintheforwardscatteringanddepolarizationfavorofanalyzingthevariationofpolarizationcom-,(),prehensivelywiththeincidentwavelengthis0.532μmandthecarboncoreradiusis3μm.AsisshowninFig.3ctherearemultiplepeaksatdifferentthicknesseswhosepolarizationarecloseto1indica-,occursinothersitesbeyondthepeak.Therearepeakswhosepolarizationiscloseto1whichindicateslinearlypolarizedlightappeared.3.3OpticalCrossSectionThescatteringcrosssection,extinctioncrossFig.3PolarizationofC@H2Ocompositeparticlesatdiffer-differentnuclearradius),a(entincidentwavelengths(),bdifferentwaterfilmthickness.Thepolari-()czationexhibitingobviousoscillationthatdiminishedgraduallyastheangleincreasedandithasthemost,,302发光学报第40卷sectionandabsorptioncrosssectionagainstparticleradiuswereplottedinFig.4-6forthesakeoffur-therdiscussonthescatteringcharactersofC@H2Ocompositeparticle.Thescatteringcrosssectionincreasesfirstand,thendecreasesslightlywiththeincreaseoftheradi-usandreachesitsmaximumatabout0.1μm.Cer-tainoscillationswhicharetheresultoftheinterac-tionbetweenelectricdipoleandmagneticdipoleap-peared.Thegreatertheradiusthemoreobviousthe,concussionandfinallygraduallystabilized.Thepo-,sitionofthefirstpeakmovestowardthedirectionofradiusasthewavelengthincreasedasisshowninFig.4.Theextinctioncrosssectionhasthesimilar,charactersasthescatteringcrosssectionasis-,Fig.6Relationshipbetweentheextinctioncrosssectionandtheparticleradiusunderdifferentwavelengths.Theabsorptioncrosssectionincreasesfirstandthende-creasesastheradiusincreasesandobviousoscilla-,tionsappeared.Themaximumpeakmovestowardtothedirectionofradiusasthewavelengthincreased.showninFig.5.ThecurvesoftheextinctioncrosssectionagainsttheparticleradiusareplottedinFig.,6.Theabsorptioncrosssectionincreasesfirstandthendecreasesastheradiusincreasesobviousos-cillationswhicharetheresultoftheinteractionbe-tweenelectricdipoleandmagneticdipoleappear.Themaximumpeakmovestowardthedirectionofra-diusasthewavelengthincreased.4ConclusionThescatteringcharacteristicsofC@H2Ocom-Fig.4Relationshipbetweenscatteringcrosssectionandra-positesphericalparticlesaregiveninthispaper.Itdiusunderdifferentincidentwavelengths.Thescatter-isfoundthattheincidentwavelengthradiusoftheingcrosssectionincreasesfirstandthendecreasescoreandthethicknessofthewaterfilmallhaveslightlywiththeincreaseoftheradiusandreachesgreatinfluenceontheforwardscatteringintensity.itsmaximumatabout0.1μm.Thegreatertheradi-Thelargertheincidentwavelengthusthemoreobvioustheconcussionandfinallyscatteringintensitythelargerthenuclearradius;theweakerthe,,,,,,,graduallystabilized.Fig.5Relationshipbetweenextinctioncrosssectionandra-diusunderdifferentincidentwavelengths.Theex-tinctioncrosssectionincreasesfirstandthendecrea-sesslightlywiththeincreaseoftheradiusandrea-chesitsmaximumatabout0.1μm.Ithasthesimi-larlycharacterstotheextinctioncrosssection.thethickerthewaterfilmthicknessthestrongertheforwardscattering.However,therearenoobvious,changesonthebackscattering.Asamatteroffacttheincidentwavelengthcarbonnuclearradiusand,waterfilmthicknessallhavetheinfluenceonpolari-zation.Thepeakvalueofthepolarizationiscloseto1thatmeanslinearlypolarizedlightappearedinsev-eralsiteswithlargerincidentwavelengths.Therearemorepolarizationpeaksonlargernuclearradius.Andthenumberofpeaksaddswiththeincreasedwaterfilmthickness.Theopticalcrosssectionisaf-fectedbytheincidentwavelengthasfollowingsthe:,maximumpeakoftheopticalcrosssectionmovesto-wardthedirectionofradiuswiththeincreasingofinci-dentwavelengthaccompaniedbycertainoscillations.,][1,(,2):2005Rep.345-396.]曾飞,高世杰,伞晓刚,等.4第3期LYUYi-ying,etal.:ScatteringCharacteristicsofC@H2OCompositeParticleBasedonMieLight…303References:MAJUMDARAK.Free-spacelasercommunicationperformanceintheatmosphericchannel[]J.J.Opt.FiberCommun.[2[3[4(1Opt.,92016ZENGF,,GAOSJ):机载激光通信系统发展现状与趋势[].中国光学,2016J,etal..Developmentstatusandtrendofairbornelasercommunicationterminals,SANXG(]天空背景光对空间激光通信系统的影响[.激光与光电子学进展,2017J65-73.]范新坤,张磊,佟首峰,等.,TONGSF,),54]非视线光散射通信的大气传输模型[.中国激光,2006JserOptoelectron.Prog.]冯涛,陈刚,方祖捷.,FANGZJ.Atmosphericpropagationmodelinnon-line-of-sightopticalscatteringcommunication,etal..Influenceofskybackgroundlightonspacelasercommunicationsystem(,ZHANGL1522-1526.inChineseinChineseFANXKFENGT070601.,(5465-73.,33):72017,9070601.[]J):):):1117()((.La-][J.[]J.Chin.,CHENG,Chin.J.Lasers,YANGJKCHANGSL200611):(,33,YANGJC1522-1526.inChinese(),WirelessCommunicationsandNetworks,Wuhan,5284:20041621-31.,etal..TheexperimentalresearchofUVcommunication[]C.ProceedingsofSPIE[5][6][7][8[9]]614-631.1700256.():,2013,38anicEng.,,KIMJHSHIMTS(,CHOS4,292017,ZHOUN):22,SHILMater.YUANW[]JMISHCHENKOMIVANWALREEPA.Propagationandscatteringeffectsinunderwateracousticcommunicationchannels[]J.IEEEJ.Oce-,etal..SelectivecolorationofmelaninnanospheresthroughresonantMiescattering[]J.Adv.,etal..StructuralcolorationofcolloidalfiberbyphotonicbandgapandresonantMiescattering.ACSAppl.Mater.Interfaces20152514064-14071.,(,7):FORTRANprogram[]徐庆君,庄申栋.10,YANGP.Far-fieldLorenz-Miescatteringinanabsorbinghostmedium[]J基于241-252.]散射理论对砷化镓光子晶体安德森定域化研究[.强激光与粒子束,2011J.J.Quant.Spectrosc.Radiat.Transfer,2052018Mie,::theoreticalformalismand,232613-2616.,ZHUANGSD.StudyonAndersonlocalizationofphotoniccrystalofGaAsbasedonMiescatteringtheoryXUQJ,HighPowerLaserPart.Beams基于]徐庆君,韦德泉,田贵才.2011Mie(10):,23]散射理论的铌酸锂晶粒散射特性[.发光学报,2009J2613-2616.inChinese()[11(,306):867-871.Chin.J.Lumin.]徐庆君,田贵才.[12XUQJXUQJ,,TIANGC.ThescatteringcharacteristicsofLiNbO3particlebasedonMielightscatteringtheoryWEIDQ,2009基于(6,]散射理论的反蛋白石光子晶体定域化研究[.量子电子学报,2009J26[]J,TIANGC.LocalizationofreverseopalphotoniccrystalbasedonMielightscatteringtheoryinChinese867-871.,30Mie):):6()(698-702..Chin.J.Quan-[13,,26tumElectron.(6]吴良海,高隽,范之国,等.,FANZGWULH2009inChinese):698-702.大气粒子散射特性及其对空间偏振分布的影响[].光学学报,2011J,etal..Scatteringofparticlesintheatmosphereandtheirinfluenceoncelestialpolarization0701005.,31):7()(,GAOJ[]J,HULSTHC.Reviewofpublications-lightscatteringbysmallparticles.ActaOpt.SinicainChinese0701005.,312011,):7(()[]J.J.R.Astron.Soc.Can.,1960,():10][J.][J.[]14patternsVANDE():54589.[]王蓉蓉,吴振森,张艳艳,等.15WANGRRPart.Beams,WUZS,,262014,ZHANGYY():11153-159.(inChinese)]太赫兹波在雾中的多重散射特性[.强激光与粒子束,2014J,etal..MultiplescatteringcharacteristicsofTHzwaveinfog,(26[]J):153-159.11.HighPowerLaser1981-),女,山东济宁人,硕吕依颖(士,讲师,年于天津大学获得硕士学位,主要从事光学理论和实验的研究2007。:E-maillyy100325@163.com1979-),男,山东滕州人,博徐庆君(士,副教授,年于南开大学获得博士学位,主要从事固体光散射与光电功能材料方面的研究2006。:E-mailwlxqj@126.com